Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Methods ; 19(1): 101, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770966

RESUMO

BACKGROUND: Sugarcane (Saccharum spp.) is the core crop for sugar and bioethanol production over the world. A major problem in sugarcane production is stalk lodging due to weak mechanical strength. Rind penetrometer resistance (RPR) and breaking force are two kinds of regular parameters for mechanical strength characterization. However, due to the lack of efficient methods for determining RPR and breaking force in sugarcane, genetic approaches for improving these traits are generally limited. This study was designed to use near-infrared spectroscopy (NIRS) calibration assay to accurately assess mechanical strength on a high-throughput basis for the first time. RESULTS: Based on well-established laboratory measurements of sugarcane stalk internodes collected in the years 2019 and 2020, considerable variations in RPR and breaking force were observed in the stalk internodes. Following a standard NIRS calibration process, two online models were obtained with a high coefficient of determination (R2) and the ratio of prediction to deviation (RPD) values during calibration, internal cross-validation, and external validation. Remarkably, the equation for RPR exhibited R2 and RPD values as high as 0.997 and 17.70, as well as showing relatively low root mean square error values at 0.44 N mm-2 during global modeling, demonstrating excellent predictive performance. CONCLUSIONS: This study delivered a successful attempt for rapid and precise prediction of rind penetrometer resistance and breaking force in sugarcane stalk by NIRS assay. These established models can be used to improve phenotyping jobs for sugarcane germplasm on a large scale.

2.
Front Plant Sci ; 14: 1224268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546250

RESUMO

Sugarcane is a major industrial crop around the world. Lodging due to weak mechanical strength is one of the main problems leading to huge yield losses in sugarcane. However, due to the lack of high efficiency phenotyping methods for stalk mechanical strength characterization, genetic approaches for lodging-resistant improvement are severely restricted. This study attempted to apply near-infrared spectroscopy high-throughput assays for the first time to estimate the crushing strength of sugarcane stalks. A total of 335 sugarcane samples with huge variation in stalk crushing strength were collected for online NIRS modeling. A comprehensive analysis demonstrated that the calibration and validation sets were comparable. By applying a modified partial least squares method, we obtained high-performance equations that had large coefficients of determination (R2 > 0.80) and high ratio performance deviations (RPD > 2.4). Particularly, when the calibration and external validation sets combined for an integrative modeling, we obtained the final equation with a coefficient of determination (R2) and ratio performance deviation (RPD) above 0.9 and 3.0, respectively, demonstrating excellent prediction capacity. Additionally, the obtained model was applied for characterization of stalk crushing strength in large-scale sugarcane germplasm. In a three-year study, the genetic characteristics of stalk crushing strength were found to remain stable, and the optimal sugarcane genotypes were screened out consistently. In conclusion, this study offers a feasible option for a high-throughput analysis of sugarcane mechanical strength, which can be used for the breeding of lodging resistant sugarcane and beyond.

3.
Plant Methods ; 17(1): 76, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256789

RESUMO

BACKGROUND: Sugarcane (Saccharum officinarum L.) is an economically important crop with stalks as the harvest organs. Improvement in stalk quality is deemed a promising strategy for enhancing sugarcane production. However, the lack of efficient approaches for systematic evaluation of sugarcane germplasm largely limits improvements in stalk quality. This study is designed to develop a systematic near-infrared spectroscopy (NIRS) assay for high-throughput phenotyping of sugarcane stalk quality, thereby providing a feasible solution for precise evaluation of sugarcane germplasm. RESULTS: A total of 628 sugarcane accessions harvested at different growth stages before and after maturity were employed to take a high-throughput assay to determine sugarcane stalk quality. Based on high-performance anion chromatography (HPAEC-PAD), large variations in sugarcane stalk quality were detected in terms of biomass composition and the corresponding fundamental ratios. Online and offline NIRS modeling strategies were applied for multiple purpose calibration with partial least square (PLS) regression analysis. Consequently, 25 equations were generated with excellent determination coefficients (R2) and ratio performance deviation (RPD) values. Notably, for some observations, RPD values as high as 6.3 were observed, which indicated their exceptional performance and predictive capability. CONCLUSIONS: This study provides a feasible method for consistent and high-throughput assessment of stalk quality in terms of moisture, soluble sugar, insoluble residue and the corresponding fundamental ratios. The proposed method permits large-scale screening of optimal sugarcane germplasm for sugarcane stalk quality breeding and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...